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This work describes a simple method linking specific rate constantsk(E,J) of bond fission reactions ABf
A + B with thermally averaged capture rate constantskcap(T) of the reverse barrierless combination reactions
A + B f AB (or the corresponding high-pressure dissociation or recombination rate constantsk∞(T)). Practical
applications are given for ionic and neutral reaction systems. The method, in the first stage, requires a phase-
space theoretical treatment with the most realistic minimum energy path potential available, either from reduced
dimensionality ab initio or from model calculations of the potential, providing the centrifugal barriersE0(J).
The effects of the anisotropy of the potential afterward are expressed in terms of specific and thermal rigidity
factorsfrigid(E,J) andfrigid(T), respectively. Simple relationships provide a link betweenfrigid(E,〈J〉) andfrigid(T)
where〈J〉 is an average value ofJ related toJmax(E), i.e., the maximumJ value compatible withE g E0(J),
andfrigid(E,〈J〉) applies to the transitional modes. Methods for constructingfrigid(E,J) from frigid(E,〈J〉) are also
described. The derived relationships are adaptable and can be used on that level of information which is
available either from more detailed theoretical calculations or from limited experimental information on specific
or thermally averaged rate constants. The examples used for illustration are the systems C6H6

+ S C6H5
+ +

H, C8H10
+ f C7H7

+ + CH3, n-C9H12
+ S C7H7

+ + C2H5, n-C10H14
+ S C7H7

+ + C3H7, HO2 S H + O2, HO2

S HO + O, and H2O2 S 2HO.

1. Introduction

Sophisticated experimental and theoretical techniques over
the past decades have been developed which allow to study
state-resolved unimolecular reaction dynamics on a very detailed
level; for instance, see ref 1. The transformation of the derived
quantities into and the comparison with thermally averaged
quantities may look like a trivial task. However the contrary is
the case. Each of the derived quantities in general is sensitive
to different properties of the reaction system such that state-
specific and thermally averaged measurements in most cases
are complementary. Obviously, they should be linked in an
intrinsically consistent way. It is the aim of the present article
to provide a simple approximate method which is suitable for
this purpose.

There are various ways to link state-specific and thermally
averaged quantities. For instance, one may have a complete
potential energy surface of the system from ab initio calculations
and perform dynamical, either quantum or classical, calculations
on them. Then a correct relation between state-specific and
thermally averaged quantities is directly accessible. In practice,
unfortunately one is far from this situation, theoretical as well
as experimental information being only fragmentary. Our work
addresses this case. On the theoretical side, we rely on statistical
adiabatic channel model/classical trajectory (SACM/CT) cal-
culations such as performed in refs 2-6. This approach employs
reduced dimensionality potential energy surfaces for transitional

modes, constructed either from ab initio or from model
calculations. On the experimental side, we rely either on
measurements of specific rate constantsk(E) for dissociation
over certain energy ranges or on measurements of rate constants
kcap(T) for capture (or association, recombination, and the reverse
dissociation) over certain temperature ranges. The method can
be applied with or without detailed SACM/CT results and can
be adapted to the amount of available information. It applies to
ionic as well as neutral reaction systems and illustrative
examples are given for both classes of reactions.

2. General Formalism

Our approach is based on an SACM/CT treatment where
conserved and transitional modes are separated such that reduced
dimensionality potentials can be employed. We consider the
process

and, for simplicity, identify the conserved modes with the
internal modes of A and B, excluding their external rotations.
Our goal is to relate specific rate constantsk(E,J) for dissociation
of AB with thermally averaged rate constants for dissociation
of AB or, more conveniently, with thermal high-pressure rate
constantskrec,∞(T) for recombination of A and B. Omitting
electronic partition functionsQel from krec,∞(T), we focus
attention on thermal capture rate constantskcap(T), related to
krec,∞(T) by† Part of the special issue “David M. Golden Festschrift”.
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A + B S AB (2.1)

krec∞(T) ) [Qel,AB/Qel,AQel,B] kcap(T) (2.2)
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In detail,kcap(T) is given by1,7

whereQtr is the product of translational partition functions

with the reduced massµ of the reaction pair A and B.W(E,J)
denotes the number of “activated complex states” or “open
channels”, or the “cumulative reaction probability”1. QA and
QB are rovibrational partition functions of A and B, respectively.
At the same level, specific rate constantsk(E,J) are expressed
by

with the rovibrational density of statesF(E,J) of AB. E is the
total rovibrational energy of the system and the total angular
momentum is characterized by its quantum numberJ.

2.1. Phase Space Theory.The present approach intends to
be as general as possible. This means that it has to be designed
as close to the real potential energy surface (PES) as possible.
However, it restricts attention to a reduced dimensionality PES
for the transitional modes which has the advantage that
molecular systems of arbitrary size can be handled with equal
effort. It avoids the guess of more or less undefined “activated
complex frequencies” which are often used as fit parameters in
the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. On the
way to a relation betweenk(E,J) andkcap(T), which is the goal
of the present article, it is obligatory to construct the most
realistic phase space theory (PST) possible. PST neglects the
anisotropy of the interaction of the potential between A and B.
PSTs have been constructed on different levels,1 without any
centrifugal barriersE0(J), with centrifugal barriers such as
calculated from the long-range part of the interaction between
A and B only (orbiting transition state theory, OTS), and with
centrifugal barriers determined from the complete short-range/
long-range PES and its minimum energy path (MEP) obtained
from ab initio or model PESs. We are convinced that only the
latter version of PST can be of general use, treating neutral and
ionic reaction systems on a common ground. This does not mean
that simpler versions of PST cannot be realistic under some
circumstances.

QA, QB, W(E,J), and F(E,J) in eqs 2.3 and 2.5 contain
contributions from conserved and transitional modes. Within
the present SACM/CT approach, these are separable such that
the contributions from conserved modes in the integral over
W(E,J) in eq 2.3 cancel against the contributions inQA andQB.
As a result, only contributions from transitional modes need to
be considered inW(E,J), QA, andQB in eq 2.3. The situation is
slightly more complicated fork(E,J) in eq 2.5 where one has to
include contributions from conserved modes of A and B and
transitional modes inW(E,J), while F(E,J) is determined by the
modes of AB. The contributions from the conserved modes,
therefore, cannot be factored out and canceled such as in the
thermal rate constants given by eq 2.3.

On the basis of the previous thoughts, in the following we
first elaborate a PST forkcap(T). Within the integral of eq 2.3
the summation overW(E,J) can either go overJ from 0 toJmax,
or W(E,J) is replaced byW(E,L) andL summed from 0 toLmax.
Here L denotes the quantum number of the orbital angular
momentum of the relative motion of A and B. The maximum

valuesJmaxor Lmaxdefine the range ofJ or L in which centrifugal
barriersE0(J) andE0(L) can be overcome on the way from A
and B to AB, i.e., in whichE g E0(J) or E g E0(L). E0(J) and
E0(L) are not identical, see ref 2. However,J approachesL for
large values of both quantities which are most relevant in
thermal recombination experiments. Likewise, most experimen-
tal studies of k(E) have been done under conditions of
comparably largeJ such thatJ ≈ L represents an adequate
approximation.

We write W(E,L) in the form

with

whereW(z) is equal to the number of quantum states of the
combined system A+ B in the energy range 0 toz. The integral
in eq 2.3 can be executed with the result

such that eq 2.3 reads

Elaborating the relationship between the centrifugal barriersE0-
(L) and the PES then leads to well-known expressions forkcap

PST,
for instance to the Langevin equationkcap

PST ) kL ) 2πqxR/µ
for ion-induced dipole PESs (q ) ionic charge of A,R )
polarizability of B), or to locked-dipole theory for ion-permanent
dipole PESskcap

PST ) kLD ) 2πqµDx2/πµkT (µD ) dipole
moment of B). PSTs for valence potentials (Gorin models or
loose transition state theory employing realistic MEPs of the
potential) can be handled in the same way as well.

The situation is more complicated for a PST treatment of
k(E,J). Here, as mentioned above, the convolution over con-
served and transitional modes, for instance in a Beyer-
Swinehart/Stein-Rabinovitch state counting routine forW(E,J)
(see refs 8 and 9), can hardly be avoided. Considering the
transitional mode part only, which in the following exclusively
is included inW(E,J), there are practically useful expressions
available (see refs 10-13) for all types of molecular complexi-
ties (A + B ) atom+ linear, atom+ spherical top, linear+
linear, linear+ spherical top, spherical top+ spherical top).
However, these expressions only apply to PST without cen-
trifugal barriers, i.e., withE0(J) ≈ E0(L) ≈ 0. Denoting the
correspondingW(E,J) by W0(E,J), fortunately, we found a way
to approximately account for the true centrifugal barriers:
SACM/CT calculations in refs 2 and 5 showed that, for large
J ≈ L

with a PST-capture probabilityw(E,J) given by

The exponentn is equal to 1, 1.5, 2, 2.5, and 3 for atom+
linear, atom+ spherical top, linear+ linear, linear+ spherical
top, and spherical top+ spherical top combinations of A+ B,
respectively. This solves the problem of calculatingW(E,J) in
PST. The second task of determiningF(E,J) is not trivial. Apart

kcap(T) )
kT

hQtrQAQB

∫0

∞ ∑
J

(2J + 1)W(E,J) exp(-
E

kT)dE

kT
(2.3)

Qtr ) (2πµkT/h2)3/2 (2.4)

k(E,J) ) W(E,J)/hF(E,J) (2.5)

W(E,L) ) W(E - E0(L)) ) W(z) (2.6)

z ) E - E0(L) (2.7)

∫0

∞
W(z) exp(-z/kT) dz/kT ) QAQB (2.8)

kcap
PST(T) )

kT

hQtr
∑

L

(2L + 1) exp[-E0(L)/kT] (2.9)

WPST(E,J) ) W0(E,J) w(E,J) (2.10)

w(E,J) ≈ [1 - E0(J)/E]n (2.11)
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from theJ dependence ofF(E,J), see refs 11-15, there is the
problem of anharmonicity contributions which is far from being
solved. Leaving these complications aside, however, the given
expressions forW(E,J), together withF(E,J), provide a direct
and simple link betweenk(E,J) andkcap(T) within the framework
of PST.

2.2. Results for Anisotropic Potentials.The real complica-
tion of the problem comes in through the anisotropy of the PES
which reduceskcap(T) andk(E,J) to values below those given
by PST. In reality, all potentials are more or less anisotropic
and even PESs, which are isotropic at large A-B distances, at
small A-B distances contain considerable and often underes-
timated anisotropic components arising from short-range valence
contributions to the PES. We characterize these anisotropy
effects by rigidity factorsfrigid, defined by

and

where frigid(E,J) and WPST(E,J) correspond to the transitional
modes only. The convolution of the contributions from transi-
tional and conserved modes leads to the totalW(E,J) employed
in the calculation of the specific rate constantsk(E,J) in eqs
2.3 and 2.5 as well as in section 2.1.

Our full SACM/CT treatments of the processes of eq 2.1,
both on ab initio and on model PESs, have given detailed results
for frigid(T) and frigid(E,J); see refs 2-6. These trajectory
calculations may appear routine today. They are nevertheless
time consuming, and it is the aim of the present article to provide
short-cuts and avoid the CT-calculations.

In what follows, we neglect the difference betweenJ andL.
We inspect the results of SACM/CT from refs 2-6 and first
consider the case whenfrigid(E,J) is of the form

wherez as above is given byz ) E - E0(J). In general, there
will be a complicatedJ dependence offrigid(E,J) in addition to
that throughE - E0(J). We shall show examples of such
dependences below. However, detailed calculations offrigid(E,J)
show that theJ-dependent curves sometimes can approximately
be collapsed into one curvefrigid(z) such as illustrated below.
Figure 1 gives an example from ref 5 for the reaction system
C8H10

+ S C7H7
+ + CH3 which will be considered in more detail

below. Cases like this are particularly simple to handle such as
demonstrated in the following sentences.

If eq 2.14 is valid, one may insert eqs 2.6 and 2.14 into eq
2.3 and obtain

If the specific rigidity factor for the transitional modes
frigid(E,J) from eq 2.14 now can be represented in exponential
form

with an empirical fit parameterT0, then the integral in eq 2.15
can be solved, giving

with

This leads to

As a consequence we finally obtain

with n ) 2, 2.5, 3, 3.5, and 4 for A+ B ) atom+ linear, atom
+ spherical top, linear+ linear, linear+ spherical top, and
spherical top+ spherical top combinations, respectively. For
this special case, we have thus established a simple relationship
between specific rigidity factors for the transitional modes
of the form frigid(E,J) ≈ frigid(z) ) exp(-z/kT0), with z )
E - E0(J) from eq 2.16 and the empirical fit parameterT0, and
thermal rigidity factors

in eq 2.20.
In the same way as before one may generalize eq 2.16 for

the case that specific rigidity factors can be approximated by

In this case, we derive

Figure 1. Specific rigidity factorsfrigid(E,J) for the transitional modes
in the dissociation of ethylbenzene cations C8H10

+ S C7H7
+ (benzylium)

+ CH3 (points, SACM/CT calculations5 for individual J in the range
25-210 with E0(J)/hc in the range 0.82-750 cm-1; for symbols, see
ref 5; full line, empirical representation byfrigid(E,J) ≈ exp{-[E -
E0(J)]/kT0} with the empirical fit parameterT0 ) 376 K).

∫0

∞
frigid(z)W(z) exp(-z/kT) dz/kT ≈ (τ/T)QA(τ)QB(τ)

(2.17)

τ ) T0T/(T0 + T) (2.18)

kcap(T) ≈ (τT)QA(τ)QB(τ)

QA(T)QB(T)
kcap

PST(T) (2.19)

kcap(T) ≈ (τ/T)nkcap
PST(T) (2.20)

frigid(T) ≈ (τ/T)n (2.21)

frigid(z) ≈ f0 + f1 exp(-z/kT1) + f2 exp(-z/kT2) + ....
(2.22)

kcap(T) ≈ [f0 + f1(τ1/T)n + f2(τ2/T)n + ...] kcap
PST(T) (2.23)

kcap(T) ) frigid(T)kcap
PST(T) (2.12)

W(E,J) ) frigid(E,J) WPST(E,J) (2.13)

frigid(E,J) ≈ frigid(E - E0(J)) ) frigid(z) (2.14)

kcap(T) ≈ kT

hQtrQAQB
∑

J

(2J + 1)

exp[-E0(J)/kT]∫0

∞
frigid(z)W(z) exp(- z/kT) dz/kT (2.15)

frigid(z) ≈ exp (-z/kT0) (2.16)
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This gives

where the exponentn is defined as in eq 2.20 and

We have again established a relationship between the specific
rigidity factors from eq 2.22, with the empirical fit parameters
fi andTi and thermal rigidity factors given by eq 2.24. The fits
can be used in either direction, fromfrigid(z) to frigid(T) or vice
versa. The following section demonstrates how this simple
procedure, which short-cuts the cumbersome complete SACM/
CT calculations, can be exploited in practice.

If frigid(E,J) has a more complicatedJ dependence than given
by eq 2.14, one can obviously not conclude fromfrigid(T) on
the detailedE andJ dependences offrigid(E,J). Instead, one can
only derivefrigid(E,〈J〉) for an averageJ and ask for the meaning
of the corresponding average value〈J〉 of the angular momentum
quantum numberJ. This question may look difficult to answer
in general. However, our detailed SACM/CT calculations from
refs 2-6 provide relationships between〈J〉 andJmax which can
be used for practical applications. SACM/CT calculations of
frigid(E,J) andfrigid(T), for a variety of model potentials, in ref 2
showed that indeed〈J〉 is linked toJmax. For instance, for ion-
permanent dipole potentials withE0(J) ) 0 for J e Jmax, we
derived2

and

whereJmax≈ (2µqµD/p2)1/2 is independent ofE. Equations 2.26
and 2.27, therefore, lead to

Model valence potentials for atomic A and linear B combining
to linear AB in ref 2 gave

while the combination toT-shaped AB gave

Dipole-dipole systems treated in ref 2 led to

Therefore, one may estimate〈J〉 to be in the range

Investigations with ab initio potentials are analyzed with respect
to the ratio〈J〉/Jmax in the following section.

The SACM/CT calculations from ref 2 illustrated that various
types of J dependences offrigid(E,J) can occur besides the
dependence onE - E0(J). If the dynamics is nonadiabatic, i.e.,
has a small effective massM and a Massey parameterê )
x2M smaller than unity,frigid(E,J) tends to become indepen-
dent ofJ/Jmax. In this case our simple treatment with eqs 2.22-
2.25 becomes fully adequate. In other cases with more com-

plicated dependences offrigid(E,J) on J, one may at least
approximately reconstruct theJ dependence around〈J〉 by
comparison with the model calculations from ref 2. The
corresponding procedure is illustrated later on. It should be
emphasized, however, that real systems can have quite specific
properties where the present simple approach can only serve
for a first estimate.

3. Practical Examples

The derived simple relationships between specific and thermal
rigidity factors from section 2 provide opportunities for practical
applications. To go beyond simple fitting of relatively undefined
“activated complex frequencies” in conventional rigid activated
complex RRKM theory, it requires realistic PST calculations
of kPST(E,J) andkcap

PST(T). Unavoidably, this at first involves
the determination of centrifugal barriersE0(J) with a realistic
MEP potentialV(r) wherer denotes the center-of-mass distance
between A and B. In other words, forJ ≈ L, the centrifugal
maximaE0(J) of the potential

have to be calculated. Provided that one hasV(r) from ab initio
or model calculations of the PES, this is an easy task. For
instance, if the C8H10

+ system characterized in Figure 1 would
be treated by an ion-induced dipole potentialV(r) only, one
would have

andE0(J) would be given by

Accounting for a short-range valence contribution toV(r), in
addition to the long-range ion-induced dipole part from eq 3.2,
adds an additional factor toE0

ID(J) from eq 3.3. One obtains5

Having determinedE0(J), such as described for the C8H10
+

system, eqs 2.9 and 2.12 lead tokcap(T). The calculation ofk(E,J)
is slightly more involved. It may be done with a standard rigid
activated complex RRKM code. However, in this case the
starting array of the Beyer-Swinehart state counting routine8,9

for the conserved modes has to be chosen asW(E,J) from section
2.2. On a simpler and often equally sufficient level, one may
calculateW(E,J) andF(E,J) employing the Whitten-Rabinovitch
formula1,15 for the conserved modes and convolute this with
W(E,J) for the transitional modes from section 2.2.

3.1. Examples for Ionic Systems.We have recently treated
a series ofn-alkylbenzene cation systems5,6 by SACM/CT
calculations on model PESs, calibrating the leading anisotropy
parameter of the potential by comparison with one experimental
observable and then predicting all other quantities. These cases
were characterized by small Massey parameters, i.e., by nona-
diabatic dynamics, such that our method applies best, see above.
In the following, we illustrate the results. We first again consider
the reaction

where C8H10
+ is the ethylbenzene and C7H7

+ the benzylium
cation. Figure 1, such as obtained for this system,5 indeed
showed thatfrigid(E,J) essentially only depends onE - E0(J),

frigid(T) ≈ f0 + f1(τ1/T)n + f2(τ2/T)n + ... (2.24)

τi ) TiT/(Ti + T) (2.25)

frigid(T) ≈ 0.5 (2.26)

frigid(E,J) ≈ 1 - (J/Jmax)
2 (2.27)

〈J〉/Jmax ≈ 1/x2 ≈ 0.707 (2.28)

〈J〉/Jmax ≈ (1 - 1/x2)1/2 ≈ 0.541 (2.29)

〈J〉/Jmax ≈ (1 - x2/3)1/2 ≈ 0.428 (2.30)

〈J〉/Jmax ≈ 0.541 (2.31)

〈J〉/Jmax ≈ 0.55( 0.2 (2.32)

V(r,J) ) V(r) + J(J + 1) p2/2πµr2 (3.1)

V(r) ≈ -R q2/2r (3.2)

E0
ID(J) ≈ [J(J + 1) p2/2µ]2/2R q2 (3.3)

E0(J) ≈ E0
ID(J)/(1 + 0.0169J + 2.65× 10-4 J1.79) (3.4)

C8H10
+ S C7H7

+ + CH3 (3.5)
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with E0(J) given by eqs 3.3 and 3.4. Approximatingfrigid(E,J)
from the detailed SACM/CT calculations illustrated in Figure
1 by eq 2.16 leads to the empirical fit parameterT0 ) 376 K.
On the basis of thisfrigid(E,J), our simplified approach tok(E,J),
e.g., gives ak(E,J ) 50) which in Figure 2 is compared with
experimental16,17k(E), with k(E) from an empirical representa-
tion18 in the formk(E) ∝ (E-E0)s*-1, with k(E,J)PST from PST,
and withk(E,J) from the detailed SACM/CT calculations.5 The
simple representation offrigid(E,J) from Figure 1 by eq 2.22
performs very well indeed and well reproduces the experimental
k(E,J ) 50) (E andE0(J) in our article are counted above the
rovibrational ground state of separated A+ B, where in contrast
to this convention,E in k(E) in the figures is always counted
above the rovibrational ground state of the combined AB).
Employing the derived parameters in eq 2.23 then leads to
thermal capture rate constants such as shown in Figure 3. There
is very good agreement between the limited available experi-
ments19and the present simplified prediction ofkcap(T) on the
basis of the experimental data fork(E). For this reaction system,
experimental results have been obtained for specific rate

constantsk(E) and thermal rate constants. One of the two has
been used to calibrate the anisotropy of the PES which then
formed the basis of the SACM/CT calculations for the other
quantity. As shown here, the described simple direct link
betweenk(E) andkcap(T) would have provided similarly good
results and avoided the cumbersome SACM/CT calculations.
However, one would have had to know in advance that one
may use eq 2.16.

Measurements ofk(E)20 andkcap(T)21 have also been made
for the dissociation ofn-propylbenzene cations

In this case, the experimental data fork(E) were more
fragmentary than for C8H10

+ but they also allowedfrigid(E,J) to
be represented by eq 2.16 with the empirical fit parameterT0

) 259 K. Figure 4 compares the derived simplified representa-
tion of k(E,J ) 50) with the experimental results20 and SACM/
CT calculations.5 Good agreement between the two latter results
are obtained. One should remember that the latter treatment also
used the calibration of the anisotropy amplitude by the
experimentalk(E). Employing eqs 2.16-2.21 for the link
betweenk(E,J) andkcap(T) leads to thermal capture rate constants
such as illustrated in Figure 5. Again the experimental results21

for kcap(T) are reproduced surprisingly well.
The dissociation ofn-butylbenzene cations on the bond fission

channel

has been studied experimentally in detail22,23 with respect to
the specific rate constantsk(E). The results can well be expressed
by eq 2.22 with the empirical fit parametersf0 ) 0.0037,f1 )
1 - f0, andT1 ) 179 K. Similarly good agreement between
this representation, SACM/CT calculations from ref 6, and the
experiments has been found as for C8H10

+ andn-C9H12
+, such

that we do not need to illustrate the data here. However, in this
case, no measurements ofkcap(T) have been made as yet.
Although one predicts24 that the competing tight transition state
channel

Figure 2. Specific rate constantsk(E,J) for the dissociation of C8H10
+

(see Figure 1; upper curves, PST withJ ) 0, 55, and 90 from bottom
to top andJ ) 0 without centrifugal barriers (shorter curve); full line,
empirical representation18 of experimentalk(E) by k(E) ∝ (E-E0)4.824,
see ref 5; full circle, experimental result from ref 17; heavy line around
18000 cm-1, experimental results from ref 16; dashed line, SACM/CT
calculations ofk(E,J ) 50); open circles, this work withfrigid(E,J) from
eq 2.16 with the empirical fit parameterT0 ) 376 K).

Figure 3. Thermal capture rate constantskcap(T) for the reaction C7H7
+

+ CH3 f C8H10
+ (see Figures 1 and 2; upper curve, PST; lower curve,

this work withfrigid(T) ) [T0/(T0 + T)]4 andT0 ) 376 K, see eqs 2.18-
2.20; points, experimental results from ref 19).

Figure 4. Specific rate constantsk(E,J) for the dissociationn-C9H12
+

f C7H7
+ (benzylium)+ C2H5 (upper curve, PST forJ ) 50; full circles,

experimental results from ref 20; line through full circles, SACM/CT
calculations forJ ) 50 from ref 5; open triangles, this work with
frigid(E,J ) 50) from eq 2.16 with the empirical fit parameterT0 )
259 K).

n-C9H12
+ S C7H7

+ + C2H5 (3.6)

n-C10H14
+ f C7H7

+ + C3H7 (3.7)

n-C10H14
+ f C7H8

+ + C3H6 (3.8)
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will dominate the thermal dissociation ofn-C10H14
+ over wide

temperature ranges, one may also be interested in the dissocia-
tion via channel 3.7 and the correspondingkcap(T) for the reverse
association. Figure 6 shows the prediction by comparing the
full SACM/CT modeling6 with the simple link ofkcap(T) and
k(E) by eq 2.23 using the parameters given above. Apart from
a minor deviation at high temperatures, the agreement between
the two methods to predictkcap(T) on the basis of the
experimentalk(E) appears quite satisfactory.

There are two reasons why the simple procedure of eqs 2.14-
2.25 works so well for the describedn-alkylbenzene cations:
on one hand, these systems have relatively strong isotropic long-
range ion-induced dipole potentials; on the other hand, they are
characterized by small Massey parametersê such that their
dynamics is relatively nonadiabatic2. Both factors move
frigid(E,J) into the direction where there is noJ dependence
beyond that included inE0(J). As a consequence, one may use
the functional form offrigid(E,J) chosen in eqs 2.16 and 2.22.

In the following we now consider the C6H6
+ system and its

dissociation

which starts to behave in a different way. This system still has
a small Massey parameter and, hence, it shows major deviations
from adiabatic dynamics.2,6 However, because of the small
polarizability of H atoms, the isotropic long-range ion-induced
dipole potential is so weak that the anisotropic short-range
valence potential dominates. For the latter potential, there are
large J dependences offrigid(E,J) beyond those included in
E0(J). These effects are more common in neutral systems such
that the C6H6

+ system described in the following represents a
transition case to systems considered in section 3.2.

To illustrate the transition character of the C6H6
+ system,

we first look at SACM/CT calculations offrigid(E,J) in Figure
7. Unlike Figure 1, which characterizes systems like C8H10

+,
n-C9H12

+, and n-C10H14
+, there is a certain spread of the

J-specific curves. The dashed line in the figure representsfrigid-
(E,〈J〉) which, after thermal averaging, leads tokcap(T) such as
derived by SACM/CT calculations. As the spread of the curves
is only comparably small, for this case we do not elaborate the
relation between〈J〉 andJmax in detail but assume that eq 2.32
holds sufficiently well. More pronounced spreads offrigid(E,J)
will be analyzed in the following section 3.2. We note, however,
that the experimentalk(E,J) from ref 25 andk(E) from refs 25
and 26 are all very well reproduced by SACM/CT calculations6

using a model PES which in part was based on ab initio
calculations.27

Even though the measurements ofk(E) and ofk(E,J) in the
C6H6

+ system are unusally detailed and accurate, it is important
to emphasize that they are by far not sufficient to specify a
completefrigid(E,J) and a unique functional form of the type of
eq 2.22 for frigid(E,〈J〉). In addition to the experiments, one
requires knowledge of the character of the PES and SACM/CT
calculations to find the adequate functional form forfrigid(E,J).
In the present case, this was provided by the investigations from
ref 6. The SACM/CT calculations offrigid(T) led to results shown
in Figure 8 which can be fitted by eq 2.23 up to the third term
with the empirical fit parametersn ) 2.5, f0 ) 0.0135,f1 )
0.109, f2 ) 0.0527, T1 ) 7.81 K, andT2 ) 58.6 K. This
expression then corresponds to the curve forfrigid(E,〈J〉) shown
in Figure 7. Employing centrifugal barriersE0(J) derived from
the MEP of the PES and given byE0(J)/hc cm-1 ≈ 1.88 ×
10-3 J4/(1 + 0.114J1.3 + 0.0122J2), one may also verify the

Figure 5. Thermal capture rate constantskcap(T) for C7H7
+ + C2H5 f

n-C9H12
+ (upper curve, PST; full circle, experimental results from ref

21; line through experimental point, this work withfrigid(T) ) [T0/(T0

+ T)]4 from eqs 2.18-2.20 withT0 ) 259 K).

Figure 6. Thermal capture rate constantskcap(T) for C7H7
+ + C3H7 f

n-C10H14
+ (upper curve, PST; lower curve without dots, SACM/CT

calculations from ref 6 based on experimental results fork(E) from
refs 22 and 23; lower curve with dots, eq 2.23 with the empirical fit
parametersf0 ) 0.0037,f1 ) 1 - f0, T1 ) 179 K).

Figure 7. Specific rigidity factorsfrigid(E,J) for the transitional modes
in the dissociation of benzene cations C6H6

+ f C6H5
+ + H (curves

with points, SACM/CT calculations from ref 6 forJ ) 0, 10, 20, 30,
40, 50 with starting points from left to right, reproducing experimental
k(E,J) from refs 25 and 26, see ref 6; dashed line, average curvefrigid

(E,〈J〉) reproducingfrigid(T)).

C6H6
+ f C6H5

+ + H (3.9)
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validity of eq 2.31. Although the spread of the curves forfrigid-
(E,J) around the curve forfrigid(E,〈J〉) is not large, eq 2.32 serves
well for the estimate of〈J〉. For instance,frigid(E,〈J〉) intersects
with frigid(E,J ) 50) at [E - E0(J)]/hc ≈ 340 cm-1. Having
E0(〈J〉 ) 50)/hc) 235 cm-1 andE0(Jmax ) 74)/hc) 572 cm-1

one obtains〈J〉/Jmax ≈ 0.68 which is well within the limits of
eq 2.31. For largerJ, frigid(E,J) becomes nearlyJ-independent
and f(E,〈J〉) cannot be attributed to a specific〈J〉 anymore. At
the same time, the curve forfrigid(E,〈J〉) in Figure 7 becomes
relatively uncertain. The results of Figure 8 in Figure 9 are used
to predictkcap(T). As in Figures 3, 5, and 6,kcap(T) at higher
temperatures is far belowkcap

PST(T). However, because of the
much weaker long-range potential, the approach between
kcap(T) andkcap

PST(T) takes place at much lower temperatures
in C6H6

+ than in the alkylbenzene cations.
3.2. Examples for Neutral Systems.Specific rate constants

frigid(E,J) for the transitional modes may also show much
strongerJ dependences besides the dependence onE - E0(J)
than shown in Figures 1 and 7. This will be the case, when the
reaction approaches adiabatic dynamics with Massey parameters
ê larger than unity and when both the long-range and short-
range parts of the potential are strongly anisotropic. As an
example, we have chosen the H2O2 system

for which SACM/CT calculations have been made4 on the ab
initio PES from refs 28-30. The potential is characterized by
strong long-range HO dipole-dipole and short-range H2O2

valence contributions. The relevant quantitiesE0(J), Jmax,
frigid(E,J), andfrigid(T) for the dipole-dipole system have been
derived explicitly in ref 2, being

and

whereµD1 ) µD2 ) µD(HO) in this case. The combination of
eqs 3.13 and 3.14 led to eq 2.31, see above. Considering the
complete ab initio potential of H2O2, obviously one expects
deviations from eqs 3.11-3.14. These are inspected in the
following. Since the experimental data fork(E,J) and kcap(T)
are relatively fragmentary, see refs 31 and 32, in the following
we rely on our SACM/CT calculations4 on the ab initio potential
and determine relationships betweenfrigid(E,J) and frigid(T) by
analyzing this theoretical modeling. We, nevertheless, note that
the experimental data appear to be consistent with the SACM/
CT results; see ref 4.

Thermal rigidity factorsfrigid(T) for reaction 3.10 from the
SACM/CT calculations are shown in Figure 10. One first notes
that the thermal rigidity factor even for the real H2O2 system
does not differ too much from the dipole-dipole value of 0.354.
A fit to the form of eq 2.24 up to the third term again is possible
such as shown in the figure. The empirical parameters of this
fit are n ) 3, f0 ) 0.0413,f1 ) -0.320,f2 ) 0.639,T1 ) 1000
K, andT2 ) 40 000 K. By means of eq 2.22, specific rigidity
factorsfrigid(E,〈J〉) are directly obtained such as shown in Figure
11. The comparison of thisfrigid(E,〈J〉) with frigid(E,J) from the
SACM/CT calculations27 in Figure 11 indicates a very broad
spread and, therefore, a strongJ-dependence offrigid(E,J) in
addition to that onE - E0(J). The spread is much larger than
in the C6H6

+ system illustrated in Figure 7 and is completely
different from Figure 1, where it is absent. The broad spread of
frigid(E,J) aroundfrigid(E,〈J〉) may suggest that there is no simple
way from frigid(T) to frigid(E,J). However, this conclusion is not

Figure 8. Thermal rigidity factorfrigid(T) for C6H6
+ S C6H5

+ + H
(SACM/CT calculations from ref 6 such as illustrated in Figure 7).

Figure 9. Thermal capture rate constantskcap(T) for C6H5
+ + H f

C6H6
+ (upper curve, PST; lower curve,kcap(T) corresponding to

frigid(T) from Figure 8 and the numerical representation given in the
text).

Figure 10. Thermal rigidity factorfrigid(T) for the reaction H2O2 S
2HO (filled circles, SACM/CT calculations from ref 4; full line,
representation by eq 2.24 with parameters given in the text).

E0(J) ) {J(J + 1)h2/[6µ(µD1µD2)
2/3]}3 (3.11)

Jmax(Jmax + 1) ) 6µE1/3(µD1µD2)
2/3/p2 (3.12)

frigid(E,J) ≈ [1 - (J/Jmax)
2]3 (3.13)

frigid(T) ≈ 0.354 (3.14)

H2O2 S 2HO (3.10)
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right. First, there is a simple relation between〈J〉 and Jmax.
Analyzing Figure 11 with respect to this relation, one obtains
Figure 12 which is in perfect agreement with eq 2.31 for the
pure dipole-dipole system. At a given energyE, therefore,frigid-
(E,J) spreads between 0 andJmax(E) around〈J〉 such as given
for the pure dipole-dipole system. Apparently, the specific
rigidity factors of real H2O2 have the same general features as
the dipole-dipole system. One then may try to reconstruct
frigid(E,J) from frigid(E,〈J〉) by scaling the dipole-dipole results
from eq 3.13. Figure 13 demonstrates the success of the
procedure which is described in the following.

By analogy to the dipole-dipole result of eq 3.13, we model
frigid(E,J) in the form

where the exponentn for each energyE is fitted in such a way
that

where〈J〉/Jmax ) 0.541 from eq 2.31 applies. Figure 13 shows

that even with the complicated real PES of the H2O2 system
the procedure works quite well and fromfrigid(T), with the help
of Jmax(E), allows one to construct a complete set of specific
rigidity factors frigid(E,J) for the transitional modes.

We have also analyzed the systems

and

in a way similar to the H2O2 system. Figures 14 and 15 illustrate
reaction 3.17, Figures 16 and 17 are for reaction 3.18.frigid(T)
in Figure 14 is from SACM/CT calculations3 on an ab initio
potential which leads to good agreement with experimental
results from ref 33. It can again be fitted in the form of eqs
2.23-2.25 with the empirical fit parametersn ) 2, f0 ) 0.782,
f1 ) 0.425,f2 ) -0.519,T1 ) 52.1 K, andT2 ) 5820 K, such
that frigid(E,〈J〉) follows directly from eq 2.22. Figure 15
illustrates that there is again a considerable spread offrigid(E,J)
around this curve at smallE - E0(J) while the spread diminishes
at larger values. A reconstruction of the fullfrigid(E,J) could be
made with eqs 3.15 and 3.16 where〈J〉/Jmax ) 0.578. Figure

Figure 11. Specific rigidity factorsfrigid(E,J) for the transitional modes
in the reaction H2O2 S 2HO (set of light curves, SACM/CT calculations
from ref 4 withJ ) 1 (top), 5, 10 ... 120, 125 (bottom); heavy curve,
frigid(E,〈J〉) derived fromfrigid(T), see Figure 10).

Figure 12. Average〈J〉 as a function ofJmax(E) for frigid(E,〈J〉) in the
reaction H2O2 S 2HO (frigid(E,〈J〉) derived fromfrigid(T), see Figure 10;
open circles, SACM/CT calculations from ref 4; full line,〈J〉 ) 0.541
Jmax like eq 2.31 for dipole-dipole potential).

frigid(E,J) ≈ [1 - (J/Jmax)
2]n (3.15)

frigid(E,〈J〉) ) [1 - (〈J〉/Jmax)
2]n (3.16)

Figure 13. Reconstruction offrigid(E,J) from frigid(E,〈J〉) in the reaction
H2O2 S 2HO (dashed line,frigid(E,〈J〉) from Figure 11; full lines, SACM/
CT calculations offrigid(E,J) from ref 4, see Figure 11; lines with circles,
reconstructed curves offrigid(E,J) from frigid(E,〈J〉) and eqs 3.15 and 3.16
with J ) 15, 30, 45, ..., 120 from top to bottom).

Figure 14. Thermal rigidity factorsfrigid(T) for the reaction H+ O2

f HO2 (filled circles, SACM/CT calculations from ref 3; full line, fit
by eqs 2.23-2.25 with the parameters given in the text).

HO2 S H + O2 (3.17)

HO2 S HO + O (3.18)
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16 showsfrigid(T) for reaction 3.18 such as again calculated on
an ab initio potential.34 A fit in the form of eqs 2.23-2.25 with
the empirical fit parametersn ) 2, f0 ) 0.698, f1 ) -0.353,

andT1 ) 765 K well reproduces the calculations. The corre-
spondingfrigid(E,〈J〉) from eq 2.22 in Figure 17 is compared with
frigid(E,J) which can be reconstructed also by eqs 3.15 and 3.16
with the same〈J〉/Jmax ) 0.578 as used for reaction 3.17.

The given examples for neutral systems illustrate how
frigid(T) and frigid(E,J) can be linked if there is aJ dependence
of frigid(E,J) beyond that included inE0(J). The described
procedure is by far less time-consuming than a full SACM/CT
calculation on a complete PES.

4. Conclusions

We have analyzed the treatment of barrierless association and
the reverse bond dissociation processes

from a practical point of view. Our approach in a first stage
requires to do a phase-space theoretical calculation of thermal
capture rate constantskcap(T) (or the corresponding high-pressure
recombination or dissociation rate constants) and the corre-
sponding specific rate constantsk(E) for dissociation of AB.
This phase space theory should be done with the most realistic
minimum energy path potential, either from ab initio or from
model calculations for the potential of the transitional modes
between A and B. These PST calculations cannot be avoided if
any reasonable link between rate parameters and the potential
is desired. In a second stage, the effects of the anisotropy of
the potential are analyzed such as expressed by thermal rigidity
factors frigid(T) and specific rigidity factorsfrigid(E,J) for the
transitional modes. Our approach can take advantage of
theoretical calculations, such as SACM/CT calculations, or it
works without them when they are not available. In the latter
case it employs experimental data only, on the level as they
are available, and it provides estimates for the complementary
rigidity factors. For instance, if thermal capture rate constants
kcap(T) are available at a single temperature or over a certain
temperature range, it provides specific rigidity factors for the
calculation of specific rate constantsk(E) at a single energy or
over a certain energy range. In addition, it allows one to
approximately construct specific rigidity factorsfrigid(E,J) for
the complete determination ofk(E,J). If, on the other hand,
specific rate constants for dissociationk(E) are available, it leads
to the corresponding thermally averaged analogueskcap(T). We
have demonstrated our method both for ionic and for neutral
reaction systems. These two classes of reactions have much in
common and can be represented by one unifying approach.
Differences are not found so much between ionic and neutral
reactions but between reactions which are dominated by
differing relative magnitudes of the short-range and long-range
contributions of the potentials. The long-range contributions are
generally more important in the class of ionic reactions but the
opposite may also be found in some cases. We hope that the
method outlined in this article because of its simplicity and
versatility will find wide practical applications.
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Figure 15. Specific rigidity factorsfrigid(E,J) for the transitional modes
in the reaction HO2 S H + O2 (full lines, SACM/CT calculations from
ref 3 for J ) 1, 10, 20, 30, 40, and 50 from top to bottom; dashed line,
frigid(E,〈J〉) derived from Figure 14).

Figure 16. As for Figure 14, but for the process HO+ O f HO2

(SACM/CT calculations from ref 34, fit with parameters given in the
text).

Figure 17. As for Figure 15, but for the process HO2 S HO + O
(full lines, SACM/CT calculations from ref 34 forJ ) 1 (top), 20, 40,
60, 80, 100 (bottom); dashed line,frigid(E,〈J〉) derived from Figure 16).

A + B S AB (4.1)
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